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Abstract

We consider a seller of an item who faces potential buyers whose valuations
depend on multiple signals. The seller has the ability to control the order in which
buyers’ signals arrive, but cannot observe these signals directly. It is known from
the literature that when there are informational externalities and signals arrive all
at once efficiency is unattainable. We show that by designing the order in which
signals arrive, the seller can attain efficiency even in the presence of informational
externalities.

1 Introduction

A seller of an item often faces buyers whose valuations of the object are functions of
multiple signals. Examples include cases where the valuations buyers assign to the
object are functions of different physical properties of the item, such as a gas company
that has to check different properties of an oil field, or a buyer of a house who needs to
run several checks regarding the quality of the house’s infrastructure. In these situations
the seller has the ability to control the set of signals that buyers are exposed to and the
timing in which these signals arrive by deciding which tests will be conducted and in
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what order. However, in many situations the seller cannot observe these signals directly
either because the tests are carried out privately, or because she lacks the knowledge to
infer how a result of a test translates to a value of a signal. In this paper we show that
the seller can exploit her ability to schedule buyers’ private signals in order to attain
efficiency in settings where efficiency could not be attained had the buyers learned their
private signals prior to the sale.

As an illustration we present the following example. Consider a government that
owns an oil field. The government can either use this field independently or sell it
to an oil company that would then hold a monopoly in the market. The firm and
only the firm can conduct two tests. One test reveals the firm’s marginal cost and the
other reveals its fixed cost. The government for its part can decide which tests will be
conducted and in what order. The demand function is commonly known and so both
the firm’s profit and the consumer surplus can be deduced from any result of the tests.
The government wants to implement an efficient sale, that is, to sell the field if and only
if the value of the social welfare as a result of the sale is greater than its value in the
case of no sale. The social welfare in the case of no sale would be some constant known
to the government.1 The social welfare in the case of a sale would be the sum of the
monopoly’s profit and the consumer surplus. Our results show that the government’s
possibility of implementing the efficient sale depends on the selling procedure it uses. If
the government begins the selling process after the firm has conducted both tests then
efficiency is not attainable. However, the government can attain efficiency if it uses the
following sequential mechanism. First, it lets the firm conduct the test that reveals its
marginal cost. Then it offers the firm a menu of options, and each option provides the
firm with the right to buy the field at a specified price.2 Lastly, it lets the firm conduct
the second test and offers the field to the firm at the specified price.

In the first part of the paper we consider the case of a single buyer and a single
seller. We look at environments in which the buyer receives two payoff-relevant signals
in a sequential manner. We characterize implementability in terms of the relationship
between the buyer’s valuation and the decision rule. We first reestablish the result of

1The assumption that the social welfare in the case of no sale does not depend on the company’s
private information is not necessary for the result, and is assumed for ease of exposition.

2These options are priced such that an option to buy the field at a lower specified price costs more.
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Maskin (1992), Dasgupta and Maskin (2000), and Jehiel and Moldovanu (2001) that
in static environments (i.e., environments where each buyer knows all of his signals) a
decision rule is implementable if and only if it is monotonic with respect to the buyer’s
valuation. This means that a necessary condition for implementation is that the buyer’s
valuation does not change along the decision rule’s boundary.3 We then show that a
decision rule is implementable in a sequential environment if and only if it is monotonic
with respect to each of the buyer’s signals and, in addition, the buyer’s valuation moves
monotonically along the decision rule’s boundary.

We use these results to compare the possibility of efficient implementation between
static and sequential environments. For this purpose we examine the effect of the
buyer’s information on the social welfare. In situations where the effect of the buyer’s
information on the social welfare is limited to its effect on the buyer’s value, efficiency is
attainable in both static and sequential environments. This is because the boundary of
the efficient decision rule coincides with one of the buyer’s isovalue curves. By contrast,
in situations where the buyer’s information has other externalities on the social welfare,
efficiency is typically unattainable in static environments. This is because the boundary
of the efficient decision rule does not coincide with any of the buyer’s isovalue curves.
Nonetheless, efficiency can be attained in sequential environments. This happens in
cases where the ratio between the effects of the first and the second signals is greater
with respect to the social welfare than with respect to the buyer’s valuation. In such
cases the buyer’s valuation is monotonic along the boundary of the efficient decision
rule and efficiency is attainable. The above example illustrates such a case. The firm’s
information about its marginal cost affects the social welfare not only by its effect on
the firm’s profits but also by its effect on the consumer’s surplus. On the other hand,
the firm’s information about its fixed cost affects the social welfare and the firm’s profit
to the same extent. Therefore, if the government exposes the firm first to the signal
that reveals its marginal cost and then to the signal that reveals its fixed cost, the above
condition about the ratio of the signals’ effects holds. Hence, efficiency is attainable.

In order to further characterize the settings in which sequential mechanisms pro-
vide a higher expected social welfare than static mechanisms we also consider the case

3The boundary of the decision rule is the boundary between the set of signals that maps “do not
sell” and the set of signals that maps “do sell.”
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where the efficient decision rule cannot be implemented even in sequential environ-
ments. When the buyer’s valuation moves monotonically along the efficient decision
rule’s boundary, efficient sequential implementation is possible if and only if the buyer’s
signals arrive in a particular order. We show that when the buyer’s signals do not arrive
in the right order, the second-best decision rule of the sequential environment provides
the same expected social welfare as the second-best decision rule of the static environ-
ment. When the buyer’s valuation is not monotonic along the boundary of the efficient
decision rule, we present sufficient conditions for the second-best decision rule of the
sequential environment to provide a higher expected social welfare than the second-best
decision rule of the static environment.

In the second part of the paper we extend our analysis to settings with multiple buy-
ers. We introduce to sequential environments a notion of implementation that is robust
to others’ signal distributions. Our analysis focuses on settings of multiple buyers with
multidimensional signals and interdependent valuations.4 The possibility of efficient
static implementation in these settings has been analyzed in several important papers.
Jehiel and Moldovanu (2001) extend the insight of Maskin (1992) and Dasgupta and
Maskin (2000) to show that if buyers’ signals are independent then efficient Bayesian
implementation is generically impossible.5 In particular, this result holds in the set-
ting of linear valuations. Our first result shows that when signals arrive sequentially
efficiency is no longer generically impossible in the linear valuations setting. That is,
we show that efficiency can be implementable by sequential mechanisms on a set of
valuations of a positive measure.

Bikhchandani (2006) analyzes a static setting of multiple buyers with multidimen-
sional signals and interdependent valuations, where the agents’ valuations satisfy a
certain single-crossing property. Bikhchandani focuses on a class of mechanisms that
satisfy conditional efficiency, i.e., mechanisms that allocate the item to a buyer only
if his valuation is higher than all the other buyers’ valuations. Bikhchandani charac-
terizes the most efficient mechanism out of the ex-post implementable mechanisms in

4In environments of private values, efficiency can be attained in static settings; see Vickrey (1961),
Clarke (1971), and Groves (1973). Bergemann and Valimaki (2010) and Athey and Segal (2012)
propose mechanisms that implement efficient allocations in dynamic settings with private values.

5The setting in Jehiel and Moldovanu (2001) is more general and contains the setting of the allo-
cation of an indivisible good as a private case.
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this class.6 As implied by Jehiel and Moldovanu’s (2001) result, such a mechanism is
generically inefficient.7 Our second result shows that it is generally possible to achieve
better allocations in sequential environments. That is, we show that there exists an
implementable, conditionally efficient sequential mechanism that is more efficient than
the mechanism offered by Bikhchandani.

There are several other works that present positive results on efficient implementa-
tion in environments of interdependent valuations and multidimensional signals. Mezzeti
(2004) shows that in settings where it is possible to condition transfers on realizations
of payoffs, efficiency can be attained in static environments by executing the following
two-stage mechanism. In the first stage agents report their signals and the efficient
allocation is chosen. In the second stage each agent observes his payoff and reports
it, and each agent receives a transfer that is equal to the sum of the other agents’
reported payoffs. Our results show that in sequential environments it is possible to
achieve efficiency even in settings that require both the allocation and transfers to de-
pend only on agents’ signals.8 Johnson et al. (2003) show that in static environments
where buyers’ signals are correlated such that different values of an agent’s signal imply
different distributions of the other agents’ signals, efficient Bayesian implementation is
(approximately) possible.9 Their result depends on the aforementioned stochastic rele-
vance assumption and on the assumption that the distribution of signals is commonly
known. Our results apply to more general environments. Specifically, the environments
we consider require less restrictive demands on the behavior of the joint distribution
(in particular, agents’ signals can be independent) and buyers need not have complete
knowledge of the joint distribution. The methods to attain efficiency in static settings
that appear in both the aforementioned papers have been extended to dynamic settings.

6Jehiel et al. (2006) consider the possibility of ex-post implementation in general environments of
interdependent valuations and multidimensional signals. They show that it is generically impossible
to ex-post implement non-trivial deterministic decision rules. Bikhchandani’s result shows that Jehiel
et al.’s result does not apply to private-good settings, i.e., settings where agents care only about their
own personal allocation (private-good settings are negligible in Jehiel et al.).

7The loss of efficiency occurs because incentive compatibility implies that the seller must keep the
item on a set of signals of a positive measure and gains from trade are not realized.

8In many situations the relizations of payoffs occur long after the allocation is executed. In these
situations it seems impractical to condition the mechanisms on payoff realizations.

9The applicability of this result is problematic if agents’ signals are almost independent since then
transfers become arbitrarily large.
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Liu (2014) uses correlation among types and He and Li (2016) use transfers that are
contingent on payoff realizations, to induce efficiency in dynamic settings.

Another strand of literature deals with the question of how the seller can exploit a
sequential arrival of signals to improve her revenue. Courty and Li (2000) analyze a
revenue-maximizing mechanism in the setting of a single seller and a single buyer, where
the buyer’s signals arrive in two periods and the seller can execute the selling mechanism
in the first period. Es′′o and Szentes (2007) analyze a revenue-maximizing mechanism
in the case of multiple buyers where the seller can decide whether the buyers will be
exposed to additional signals. They show that the seller finds it optimal to release all
the information to the buyers. In this case the buyers do not receive any information
rent on those additional signals. That is, the seller’s expected revenue from the optimal
mechanism is equal to the revenue she would receive from the optimal mechanism in
the case where she knows these signals’ realizations.

The rest of the paper is organized as follows. In Section 2 we discuss the single-
buyer case. We characterize the sets of implementable decision rules in both static
and sequential environments, and present examples in which the efficient decision rule
belongs to the latter set but not to the former. In Section 3 we discuss the case of
multiple buyers. Section 4 concludes. Proofs are relegated to the appendices.

2 Single Buyer

We start our analysis with the case where the seller is facing a single potential buyer.
We characterize the set of implementable decision rules in both static and sequential
environments. The necessary and sufficient conditions we derive for the sequential
case are more permissive than the ones derived for the static case. An implication of
this result is that in sequential environments, unlike in static environments, efficiency
can be attained even in the presence of informational externalities. We apply this
observation to privatization processes and show how governments can benefit from
applying sequential mechanisms in these processes. Lastly, we consider the case where
efficiency is not attainable even by sequential mechanisms. We show that in some
settings the second-best solution provided by sequential mechanisms is equivalent to
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the solution provided by static mechanisms, and that in some settings they provide
a higher expected social welfare. We extend the results of this section to the case of
multiple buyers in the following section.

2.1 Setup

Consider a seller of a single item facing a potential buyer. There are two periods
1 and 2. The buyer receives a private signal θ1 ∈ [0, 1] in period 1, and a private
signal θ2 ∈ [0, 1] in period 2. The signals θ1 and θ2 are independent, θ2 is uniformly
distributed, and this is common knowledge.10 The buyer’s valuation V is a function
of his signals V : [0, 1]2 → R+. We assume that V is continuously differentiable and
strictly increasing in θ1 and θ2. The buyer’s payoff is minus his payment to the seller,
plus, in case he gets the item, the value of the item. We denote by A the set of feasible
allocations A = {0, 1}, where 1 is the allocation that assigns the item to the buyer, and
0 is the allocation that assigns the item to the seller. A decision rule is a function11

q : Θ→ A. A social choice function, s, assigns an allocation and a payment to the seller
for every realization of signals, i.e., s(θ) = (q (θ) , t (θ)), where q(θ) ∈ A and t (θ) ∈ R.

2.2 Static Mechanism

We start with an analysis of static mechanisms. Static mechanisms are mechanisms
that are activated after the buyer has been exposed to both his signals θ1 and θ2.
We restrict our attention to direct mechanisms and show in Appendix A that all our
results still hold in the set of indirect mechanisms. We say that a social choice function
(q (θ) , t (θ)) is implementable in a static mechanism if for every (θ1, θ2) we have

(
θ1, θ2

)
∈ arg max

(θ̂1,θ̂2)∈[0,1]2
V
(
θ1, θ2

)
· q
(
θ̂1, θ̂2

)
− t

(
θ̂1, θ̂2

)

We say that a decision rule q (θ) is implementable in a static mechanism if there exists
a transfer function t (θ) such that (q (θ) , t (θ)) is implementable in a static mechanism.

10In Section 2.2.1 we show that our analysis can be extended to any distribution function by a proper
modification of the assumption on the valuation function.

11In Appendix A we discuss the implications of our focus on deterministic mechanisms.
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We now characterize the set of implementable decision rules in a static setting. The
necessary and sufficient conditions for implementability are that the decision rule maps
according to the buyer’s valuations and that the decision rule is monotonic with respect
to these valuations.

Claim 1. A decision rule q (θ) is ex-post implementable in a static mechanism if and
only if it is of the following form:

q (θ) =


1 if V (θ1, θ2) > C

0 or 1 if V (θ1, θ2) = C

0 otherwise

for some C ∈ R.

The argument of the proof is as follows. We first show that the relevant information
for the decision rule is the buyer’s valuation. Implementability implies that the buyer
pays one price if he wins the item, t(1), and another price if he does not win the item,
t(0). Let θ and θ′ be two pairs of signals on the same buyer’s isovalue curve such that
q (θ) = 1 and q

(
θ
′
)

= 0; then implementability implies that

V (θ)− t (1) ≥ −t (0)

and
V
(
θ
′)− t (1) ≤ −t (0)

and so
V (θ) = V

(
θ
′) = t (1)− t (0)

That is, there can be at most one isovalue curve for which two pairs of signals that
lie on this isovalue curve are assigned with different alternatives. This means that
the decision rule maps alternatives according to the buyer’s valuation. Therefore, the
problem is equivalent to implementation with respect to a unidimensional signal, where
the monotonicity of the decision rule with respect to the valuation is necessary and
sufficient for implementation.
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2.3 Sequential Mechanisms

We proceed to analyze sequential mechanisms. Sequential mechanisms are mechanisms
that are activated in two periods. We restrict our attention to direct mechanisms and
show in Appendix A that all our results still hold in the set of indirect mechanisms. In
the first period the buyer is asked to report his type θ1. Then in the second period the
buyer is asked to report his type θ2. We say that a social choice function (q (θ) , t (θ))
is implementable in a sequential mechanism if the following conditions hold:

1.
Eθ2

[
V
(
θ1, θ2

)
· q
(
θ1, θ2

)
− t

(
θ1, θ2

)]
≥

Eθ2

[
V
(
θ1, θ2

)
· q
(
θ̂1, θ̂2

(
θ2
))
− t

(
θ̂1, θ̂2

(
θ2
))]

for every θ1 ∈ [0, 1] and θ̂1 ∈ [0, 1] and every θ̂2 : [0, 1]→ [0, 1].

2.
V
(
θ1, θ2

)
· q
(
θ1, θ2

)
− t

(
θ1, θ2

)
≥

V
(
θ1, θ2

)
· q
(
θ1, θ̂2

)
− t

(
θ1, θ̂2

)
for every (θ1, θ2) ∈ [0, 1]2 and θ̂2 ∈ [0, 1].

Condition 2 implies that given a truthful report of θ1, reporting θ2 truthfully is optimal
for the buyer. Condition 1 implies that reporting θ1 truthfully is optimal for the buyer
for any subsequent report about θ2. We say that a decision rule q (θ) is implementable
in a sequential mechanism if there exists a transfer function t (θ) such that (q (θ) , t (θ))
is implementable in a sequential mechanism.

2.3.1 General Distributions of Signals

We assumed that the buyer’s signals θ1 that θ2 are independent, that θ2 is uniformly
distributed, and that the buyer’s valuation function is strictly increasing in θ1 and θ2.
We now show that, by an appropriate modification of the assumption on the buyer’s
valuation function, our analysis can be applied to any distribution of the buyer’s signals.
Assume that θ1 and θ2 are distributed according to a distribution function F . Building
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on an observation of Es′′o and Szentes (2007), we define θ̃2 := F (θ2|θ1). Given any θ1

the conditional distribution of θ̃2 is uniform on the interval [0, 1]:

Pr
(
θ̃2 ≤ X|θ1

)
= Pr

(
θ2 ≤ F−1

(
X|θ1

)
|θ1
)

= F
(
F−1

(
X|θ1

)
|θ1
)

= X

That is, the signals θ1 and θ̃2 are independent and θ̃2 is uniformly distributed on
the interval [0, 1] . We define Ṽ

(
θ1, θ̃2

)
:= V

(
θ1, F−1

(
θ̃2|θ1

))
= V (θ1, θ2); i.e., any

restriction that we impose on the valuation function in the independent case we apply to
the function Ṽ through the appropriate restrictions on the original valuation function12

V . In this case the problem of implementing a decision rule q
(
θ1, θ̃2

)
falls into our

analysis.

2.3.2 Characterization of the Set of Implementable Decision Rules

A sequential mechanism is composed of two mechanisms, one in each period. The
mechanism in the first period requires the buyer to report his first-period type and
accordingly sets the properties of the second-period mechanism. The mechanism in
the second-period requires the buyer to report his second-period type and accordingly
decides whether the buyer will receive the item. A property of the second-period mech-
anism is that it sets a single price for the item, and so the set of alternatives offered in
the first mechanism is the set of optional prices for the item in the second period. We
now show that a decision rule is implementable in a sequential environment if and only
if it assigns lower prices in the second period to higher types in the first period.

Consider the set C := {C : [0, 1]→ [0, 1] s.t. C is decreasing}. For each C ∈ C we
denote θ1,C := inf {θ1 s.t. C(θ1) < 1} and θ

1,C := sup {θ1 s.t. C(θ1) > 0}.

Theorem 2. A decision rule q (θ) is implementable in a sequential mechanism if and
12For example, Courty and Li (2000) consider the case where V

(
θ1, θ2) = θ2. In this case

Ṽ
(
θ1, θ̃2) = F−1 (θ̃2|θ1). Applying the demand of monotonicity on Ṽ translates to the demand

that f
(
θ2|θ1) is strictly decreasing in θ1.
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only if there exists a function C ∈ C such that

q (θ) =


1 if θ2 > C (θ1)

0 or 1 if θ2 = C (θ1)

0 otherwise

and in addition V (θ1, C (θ1)) is a decreasing function of θ1 in the segment13
[
θ1,C , θ

1,C].
The argument of the proof is as follows. Assume the buyer reports his first type θ1

truthfully. Then in the second period we are facing an implementation problem with
respect to a unidimensional signal θ2, where the buyer’s valuation is V (θ1, θ2). Since
V is strictly monotone in θ2, implementability holds if and only if the decision rule is
monotonic with respect to θ2. The threshold is set at C (θ1) and the payment to the
seller in case of a sale is14

τ
(
θ1
)

:=

V (θ1, C (θ1)) if θ1,C ≤ θ1 ≤ θ
1,C

V
(
θ

1,C
, 0
)

if θ1,C
< θ1 ≤ 1

This implies that each report of θ1 in the first period sets a price for the item in the
second period. In addition, the buyer is charged a fee p (θ1) for participating in the
mechanism that sets the price τ (θ1). Thus, the transfer function is set as

t (θ) =

p (θ1) + τ (θ1) if q (θ) = 1

p (θ1) if q (θ) = 0

We now show why the property that τ (θ1) is decreasing is necessary and sufficient for
implementation to take place.

13For every θ1 < θ1,C we have C
(
θ1) = 1 and q

(
θ1, 1

)
= 0. For every θ1,C

< θ1 we have C
(
θ1) = 0

and q
(
θ1, 0

)
= 1. That is, for these θ1 the decision rule q

(
θ1, ·

)
is a constant function.

14In the segment
[
0, θ1,C

)
the threshold type is 1 and the buyer will not receive the item.
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τ
(
θ1
)

τ
(
θ̃1
)

1

C

D

E

F

V
(
θ1, ·

)
V
(
θ̃1, ·

)

A

B

0

Figure 1: Necessity

We start by showing why the property that τ (θ1) is decreasing is necessary. Consider
a buyer of type θ1 in the first period who is facing a price τ in the second period. The
buyer will decide to buy the object in the second period if and only if his valuation is
higher than the price. This means that the expected utility of the buyer is equal to
the integral of V (θ1, s)− τ from V −1 (θ1, τ) to 1. Assume two types θ1 < θ̃1 such that
τ (θ1) < τ

(
θ̃1
)
. These types’ valuation functions and prices are depicted in Figure 1.

If type θ̃1 deviates and reports θ1, then type θ̃1’s expected utility increases in the size
of the area of the trapezoid ABEF. Therefore, in order to prevent such a deviation,
the difference p (θ1)− p

(
θ̃1
)
must be greater than or equal to the area of the trapezoid

ABEF. If type θ1 deviates and report θ̃1 then then type θ1’s expected utility decreases
in the size of the area of the trapezoid ABCD, but he gains p (θ1) − p

(
θ̃1
)
in the

participation fee. Therefore, such a deviation is worthwhile for θ1 and implementation
fails.
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τ1

τ2

τ3

B

D

V
(
θ̇1, ·

)
V
(
θ̃1, ·

)

Figure 2: Sufficiency

We now show why the property that τ (θ1) is decreasing is sufficient. We illustrate
by an example how to construct participation fees p (θ1) that support the sorting of
the first period’s types in the case where τ (θ1) is decreasing. Consider the following
mechanism. There are three options: payment τ1 for types

[
0, θ̃1

]
, payment τ2 for types(

θ̃1, θ̇1
)
, and payment τ3 for types

[
θ̇1, 1

]
. This mechanism is depicted in Figure 2. The

following participation fees allow for the implementation of this mechanism:15

p
(
θ1
)

=


0 if θ1 ∈

[
0, θ̃1

]
B if θ1 ∈

(
θ̃1, θ̇1

)
B +D if θ1 ∈

[
θ̇1, 1

]
Payment B is type θ̃1’s willingness to pay for moving from τ1 to τ2. Therefore,

all types smaller than θ̃1 strictly prefer τ1 and a participation fee of zero to τ2 and a
participation fee of B, while all types larger than θ̃1 strictly prefer τ2 and a participation
fee of B to τ1 and a participation fee of zero. Payment D is type θ̇1’s willingness to
pay for moving from τ2 to τ3. Therefore, all types smaller than θ̇1 strictly prefer τ2 and
a participation fee of B to τ3 and a participation fee of B + D, while all types larger

15Payment B equals the area of the trapezoid whose vertices are marked in black dots. Payment D
equals the area of the trapezoid marked by the diagonal lines.
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than θ̇1 strictly prefer τ3 and a participation fee of B +D to τ2 and a participation fee
of B. These preferences are transitive and therefore the mechanism is implementable.

To conclude, an implementable sequential mechanism provides the buyer in the
first period with a menu of options, each sets a strike price for the item in the second
period. All types of the buyer agree on the ordinal order of the options (the lower the
price in the second period, the better). However, they differ in the intensity of their
preferences, such that higher θ1 types are more willing to pay for better options. To
achieve implementation, higher types must be assigned better options and hence τ (θ1)
must be decreasing.

2.4 Implementation of Efficient Decision Rules

This paper considers a seller whose objective is to attain efficiency, namely, who is
looking to execute the allocation that would produce the greatest social welfare. In
the context of a single buyer the seller will want to sell the item if and only if the
social welfare in the case where the buyer owns the item is greater than it would be
if the seller kept the item. In situations where the seller’s valuation is independent of
the information that is privately known to the buyer, efficiency is attainable in static
environments.16 When the seller’s valuation depends on the buyer’s private information
the possibility of attaining efficiency in static settings depends on the dimensionality of
the information. When the buyer’s information is unidimensional efficiency is attainable
if the buyer’s valuation satisfies a single-crossing condition.17 If, however, the buyer’s
information is multidimensional efficiency is typically unattainable.18 In this subsection
we show that in sequential environments efficiency can be attained even in the latter
case.

16This is done by simply setting the price to be the seller’s valuation.
17See, for example, Maskin (1992), Dasgupta and Maskin (2000), and Perry and Reny (2002).
18See, Maskin (1992), Dasgupta and Maskin (2000) and Jehiel and Moldovanu (2001).

14



2.4.1 Necessary and Sufficient Conditions for Attaining Efficiency

We consider efficient decision rules that take the following form. There exists a function
U : [0, 1]2 → R such that

q (θ) =


1 if U (θ1, θ2) > C

0 or 1 if U (θ1, θ2) = C

0 otherwise

where C ∈ R and U (θ1, θ2) is continuously differentiable and strictly increasing in
θ1 and θ2. We define the set Ū to be the boundary of the efficient decision rule,
i.e., Ū := {(θ1, θ2) s.t. U (θ1, θ2) = C}. Since static implementation requires that the
decision rule map according to the buyer’s valuation, we reach the following conclusion:

Corollary 3. The decision rule q (θ) is implementable by a static mechanism if and
only if for every (

θ̃1, θ̃2
)
,
(
θ1, θ2

)
∈ Ū

we have
V
(
θ̃1, θ̃2

)
= V

(
θ1, θ2

)
In words, the boundary of the decision rule coincides with one of the buyer’s isovalue
curves. We denote by [u, u] the segment of all θ1 such that there exists θ2 where
(θ1, θ2) ∈ Ū . We define θ̃2 (θ1) to be the function that assigned to any θ1 ∈ [u, u]
the threshold type it inflicts with respect to θ2, i.e., θ̃2 (θ1) := θ2 s.t. (θ1, θ2) ∈ Ū . In
a sequential environment the price for the item in the second period for every such
θ1 ∈ [u, u] is τ (θ1) := V

(
θ1, θ̃2 (θ1)

)
. Since sequential implementation requires τ (θ1)

to be decreasing, we reach the following conclusion:

Corollary 4. The decision rule q (θ) is implementable by a sequential mechanism if
and only if for every (

θ̇1, θ̃2
(
θ̇1
))
,
(
θ̃1, θ̃2

(
θ̃1
))
∈ Ū
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such that θ̃1 < θ̇1 we have

V
(
θ̇1, θ̃2

(
θ̇1
))
≤ V

(
θ̃1, θ̃2

(
θ̃1
))

In words, the buyer’s valuation weakly decreases as we move rightward along the bound-
ary of the decision rule.

θ1

θ2

θ̃1

θ̃2
(
θ̃1
)

θ̇1

θ̃2
(
θ̇1

)

V
(
θ̃1, θ̃2

(
θ̃1
))

V
(
θ̇1, θ̃2

(
θ̇1
))

Ū

Figure 3: The buyer’s valuation decreases along the boundary of the decision rule.

The boundary of the decision rule coincides with one of the buyer’s isovalue curves if
and only if the marginal rates of substitutions of V (θ) and U (θ) are equal for every
(θ1, θ2) ∈ Ū . The buyer’s valuation weakly decreases as we move rightward along the
boundary of the decision rule if and only if the marginal rates of substitutions of V (θ)
are weakly smaller than those of U (θ) for every (θ1, θ2) ∈ Ū . Therefore, the above
corollaries can be presented in terms of marginal rates of substitutions. The decision
rule q (θ) is implementable by a static mechanism if and only if

∂V/∂θ1

∂V/∂θ2

(
θ1, θ2

)
=

∂U/∂θ1

∂U/∂θ2

(
θ1, θ2

)
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for every (θ1, θ2) ∈ Ū , and is implementable by a sequential mechanism if and only if

∂V/∂θ1

∂V/∂θ2

(
θ1, θ2

)
≤

∂U/∂θ1

∂U/∂θ2

(
θ1, θ2

)

for every (θ1, θ2) ∈ Ū .

Remark. Consider the case where ∂V/∂θ1

∂V/∂θ2 (θ1, θ2) ≥ ∂U/∂θ1

∂U/∂θ2 (θ1, θ2); this inequality is equiv-
alent to ∂V/∂θ2

∂V/∂θ1 (θ1, θ2) ≤ ∂U/∂θ2

∂U/∂θ1 (θ1, θ2). Therefore, if the seller has the ability to control
the order in which signals arrive, she can achieve efficiency by setting signal θ2 to arrive
first and θ1 to arrive second. Put differently, if the seller controls the order of sig-
nals, then the monotonicity of the buyer’s valuation along the efficient decision rule’s
boundary is necessary and sufficient for implementation.

2.4.2 Application: Privatization Processes

Perhaps the most common and important situation of a seller who is interested in exe-
cuting an efficient sale is privatization. The following examples illustrate how activating
sequential mechanisms can assist the government in executing efficient privatization.

Example 5. Consider a government that owns an asset. The government can either use
this asset independently and in this case the social welfare would be C, or it can sell it
to a private firm that would then be a monopoly in the market. The government wants
to sell the asset to the firm if and only if the social welfare as a result of the sale will
be greater than C. The cost function of the monopoly depends on two arguments: an
argument θ1 that affects its marginal cost (as θ1 increases the marginal cost decreases)
and an argument θ2 that affects its fixed cost (as θ2 increases the fixed cost decreases).
The demand function is common knowledge. The profit function of the monopoly,
V (θ1, θ2), is strictly increasing in both arguments. If the firm buys the asset, the social
welfare, U (θ1, θ2), will be the sum of the monopoly’s profit and the consumer surplus
and it is also strictly increasing in both arguments.19 The first-best decision rule of the

19Transfers from the monopoly do not affect the social welfare.
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government is

q (θ) =


1 if U (θ1, θ2) > C

0 or 1 if U (θ1, θ2) = C

0 otherwise

Now, since U (θ1, θ2) takes into account the positive effect of the reduction of the
marginal cost on both the firm’s profit and the consumer surplus we have that ∂V/∂θ1 (θ1, θ2) <
∂U/∂θ1 (θ1, θ2) . The consumer surplus is not affected by a change in the fixed cost and
therefore ∂V/∂θ2 (θ1, θ2) = ∂U/∂θ2 (θ1, θ2). We conclude that ∂V/∂θ1

∂V/∂θ2 (θ1, θ2) < ∂U/∂θ1

∂U/∂θ2 (θ1, θ2).
Hence the efficient rule is implementable by a sequential mechanism and is not imple-
mentable by a static mechanism.

MC
(
θ1
)

MC
(
θ̃1
)

Pm

(
θ1
)

Pm

(
θ̃1
)

DemandMarginal Revenue

Q

P

Figure 4: The marginal cost decreases by moving from θ1 to θ̃1, where θ1 < θ̃1; as a
result the monopoly price decreases and the consumer surplus increases.

Example 6. Consider a government that owns an asset that can be allocated to one of
two potential buyers, 1 and 2. Buyer 1 and buyer 2 can both conduct tests that affect
their valuations of the asset, but while the signals of buyer 2 become public the signals of
buyer 1 are private.20 The signals of buyer 1, (θ1, θ2), affect the valuation of both buyers

20For example, buyer 2 can be a government office that is obligated by law to disclose its signals.
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in a linear manner.21 The valuation function of buyer 1 is V1 (θ1, θ2) = α1θ1 + α2θ2 + b

and the valuation function of buyer 2 is V2 (θ1, θ2) = β1θ1 + β2θ2 + g, where g > b and
αk > βk > 0 for k ∈ {1, 2}. We define U (θ1, θ2) := (α1 − β1) θ1 + (α2 − β2) θ2. The
first-best decision rule of the government is

q (θ) =


1 if U (θ1, θ2) > g − b

0 or 1 if U (θ1, θ2) = g − b

0 otherwise

By Corollary 3 the first-best decision rule is implementable in a static environment if
and only if ∂V1/∂θ1

∂V1/∂θ2 (θ1, θ2) = ∂U/∂θ1

∂U/∂θ2 (θ1, θ2) for every (θ1, θ2) ∈ Ū , namely, if and only if
β1

β2 = α1

α2 . This condition is met only for a set of parameters of measure zero in R4
+,

and so efficiency is generically impossible. By Corollary 4 the first-best decision rule is
implementable in a sequential environment if and only if ∂V1/∂θ1

∂V1/∂θ2 (θ1, θ2) ≤ ∂U/∂θ1

∂U/∂θ2 (θ1, θ2)
for every (θ1, θ2) ∈ Ū , namely, if and only if β1

β2 ≤ α1

α2 . This condition is met for a
set of parameters of positive measure in R4

+. This means that if the government can
control the timing in which the tests of buyer 1 are conducted, then it can implement
an efficient sale in scenarios where such a sale cannot be attained if buyer 1 learned
his signals prior to the sale. If, moreover, the government can control the order in
which these tests are conducted, then it can always attain efficiency. This is because
the condition on the marginal rates of substitutions is always satisfied with respect to
some order of signal arrival.

2.4.3 Second-best Analysis

In the previous subsubsections we saw that applying sequential mechanisms can enable
the seller to attain efficiency in situations where efficiency cannot be attained by static
mechanisms. The necessary and sufficient condition for efficient implementation in a
sequential environments is translated to a condition on the variations of the rates of
substitutions of the buyer’s valuation with respect to the boundary of the efficient
decision rule. In this subsubsection we consider the case where this condition does not

21The assumption of linearity is not essential for the result and is assumed for simplicity.
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hold and analyze whether the use of sequential mechanisms can still enhance the social
welfare.22 We first deal with the case where the buyer’s valuation is increasing as we
move rightward along the boundary of the efficient decision rule. We show that in this
case the social welfare cannot increase from applying sequential mechanisms.

Theorem 7. Assume that ∂V/∂θ1

∂V/∂θ2 (θ1, θ2) > ∂U/∂θ1

∂U/∂θ2 (θ1, θ2) for every (θ1, θ2) ∈ Ū . Then
there exists a second-best decision rule with the property that τ (θ1) = τ , where τ ∈ R;
namely, it sets a single price in the second period.

The argument of the proof is as follows. We show that there exists a second-best se-
quential mechanism in which there exists θ̃1 ∈ [u, u] for which τ

(
θ̃1
)

= V
(
θ̃1, θ̃2

(
θ̃1
))

.
That is, the boundary of the second-best decision rule intersects with the bound-
ary of the efficient decision rule.23 Let us consider such a mechanism. For every
θ1 < θ̃1, sequential implementability implies that τ (θ1) ≥ τ

(
θ̃1
)
. For any such θ1,

if τ (θ1) > τ
(
θ̃1
)
, then {θ2 s.t. V (θ1, θ2) ≥ τ (θ1)}, the set of signals for which a sale

is executed, is strictly contained in
{
θ2 s.t. V (θ1, θ2) ≥ τ

(
θ̃1
)}

, the set of signals for
which a sale would have been executed if the price had been τ

(
θ̃1
)
. Since the MRS of V

is steeper than the MRS of U , these two sets are contained in {θ2 s.t. U (θ1, θ2) ≥ C},
the set of signals for which a sale should be executed according to the efficient decision
rule. Therefore, if τ (θ1) > τ

(
θ̃1
)
, then the set of signals where a sale does not happen

but should happen increases with respect to the case where τ (θ1) = τ
(
θ̃1
)
and the ex-

pected social welfare decreases. For every θ1 > θ̃1 sequential implementability implies
that τ (θ1) ≤ τ

(
θ̃1
)
. For any such θ1, if τ (θ1) < τ

(
θ̃1
)
then {θ2 s.t. V (θ1, θ2) ≥ τ (θ1)}

strictly contains the set
{
θ2 s.t. V (θ1, θ2) ≥ τ

(
θ̃1
)}

and since the MRS of V is steeper
than the MRS of U these two sets contain the set {θ2 s.t. U (θ1, θ2) ≥ C}. Therefore, if
τ (θ1) < τ

(
θ̃1
)
then the set of signals where a sale does happen but should not happen

increases with respect to the case where τ (θ1) = τ
(
θ̃1
)
and the expected social wel-

fare decreases. We conclude that there exists a second-best mechanism in which there
is a single price in the second period. Such a mechanism is also implementable in a
static environment; hence, the social welfare cannot increase from applying sequential
mechanisms.

22We still restrict our analysis to deterministic mechanisms.
23The proof appears in the appendix.
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Ū

Figure 5: Second-best analysis

The above argument is illustrated in Figure 5. The area above (below) the solid line
is where a sale is efficient (inefficient). If τ (θ1) = τ

(
θ̃1
)
for every θ1, then a sale occurs

for every signal in the area above the dashed line. Now, any deviation from this pricing
policy results in a loss of welfare. If for types θ̊1 < θ̃1 we have τ

(
θ̊1
)
> τ

(
θ̃1
)
, then

a sale occurs for every signal in the area above the dotted line, and the intersection of
the area where the sale is efficient and the area where the sale is executed decreases. If
for types θ̃1 < θ̈1 we have τ

(
θ̃1
)
> τ

(
θ̈1
)
, then the intersection of the area where the

sale is inefficient and the area where the sale is executed increases.

We proceed to the case where the buyer’s valuation is not monotonic along the
boundary of the efficient decision rule. We present sufficient conditions for the second-
best solution to provide a higher expected social welfare in a sequential environment
than in a static environment. The improvement upon the static mechanism is achieved
through construction of a decision rule whose boundary differs from the boundary of the
static second-best decision rule in a way that provides a welfare-improving allocation
while maintaining sequential implementability.
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Consider the second-best decision rule that is implementable in a static mechanism.
We denote it by qSB (θ). This decision rule takes the form of

qSB (θ) =


1 if V (θ1, θ2) > CSB

0 or 1 if V (θ1, θ2) = CSB

0 otherwise

We denote by V̄ SB the boundary of the second-best static decision rule qSB (θ), i.e.,

V̄ SB :=
{(
θ1, θ2

)
s.t. V

(
θ1, θ2

)
= CSB

}
We note that the boundary of the second-best static decision rule V̄ SB and the boundary
of the efficient decision rule Ū intersect.24 We denote by θ̇1 the rightmost point at which
these boundaries intersect, i.e.,

θ̇1 := max
{
θ1 s.t.

(
θ1, θ̃2

(
θ1
))
∈ V̄ SB ∩ Ū

}
We denote by θ̈1 the leftmost point at which these boundaries intersect, i.e.,

θ̈1 := min
{
θ1 s.t.

(
θ1, θ̃2

(
θ1
))
∈ V̄ SB ∩ Ū

}
We now present sufficient conditions for improving the second-best solution by a se-
quential mechanism.

Theorem 8. Assume one of the following conditions holds: (1) for every θ1 > θ̇1

we have that V
(
θ̇1, θ̃2

(
θ̇1
))

> V
(
θ1, θ̃2 (θ1)

)
or (2) for every θ1 < θ̈1 we have that

V
(
θ1, θ̃2 (θ1)

)
> V

(
θ̈1, θ̃2

(
θ̈1
))
. Then there exists a decision rule that is sequentially

implementable and provides a higher expected welfare than qSB (θ).

The idea of the proof is as follows. Assume for example that (1) holds. This means
that at any point that is to the right of θ̇1, the boundary of the second-best static
decision rule lies above the boundary of the efficient decision rule. Therefore, we can

24In Appendix A we characterize the second-best mechanism in a static environment and show that
this property holds.
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construct a decision rule q̃ (θ) with two properties. The first is that to the left of θ̇1

the boundary of the decision rule q̃ (θ) coincides with the boundary of qSB (θ), while
to the right of θ̇1 the boundary of the decision rule q̃ (θ) is below the boundary of
qSB (θ) and above the boundary of the efficient decision rule. This property implies
that q̃ (θ) provides a higher expected welfare than qSB (θ). The second property is that
the buyer’s valuation is decreasing as we move rightward along the boundary of q̃ (θ).
This property implies that q̃ (θ) is sequentially implementable. Such a construction is
illustrated in Figure 6.

θ̇10 1

V̄ SB

Ū

E

Figure 6: The set where qSB (θ) and q̃ (θ) do not coincide is denoted by E.

3 Multiple Buyers

In this section we generalize the results of the previous section to the case of multiple
buyers. We consider a seller whose valuation for the item is zero and whose objective is
to attain efficiency. In such a scenario the seller will want to sell the item to the buyer
who values it the most. As in the single-buyer case, the possibility of static efficient
implementation depends on the dimensionality of a buyer’s information and on whether
or not this information has externalities on the valuations of other buyers. In situations
where buyers’ valuations are independent, the seller can implement an efficient sale in
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dominant strategies by executing the celebrated VCG mechanism.25 When the buyers’
valuations are interdependent and each buyer’s information is unidimensional efficiency
is attainable if each buyer’s valuation satisfies a single-crossing condition.26 However,
when buyers’ valuations are interdependent and their information is independent and
multidimensional, efficient implementation is generically impossible, as Maskin (1992),
Dasgupta and Maskin (2000), and Jehiel and Moldovanu (2001) show. In particular
their result holds in the setting of linear valuations. Our first result shows that in
this setting efficiency is not generically impossible in sequential environments. That is,
efficiency can be implementable on a positive measure set of valuations in sequential
environments.

Bikhchandani (2006) focuses on a general set of valuations that satisfy a certain
single-crossing condition. Bikhchandani considers static mechanisms that satisfy condi-
tional efficiency, i.e., mechanisms that whenever they allocate the item it is to the buyer
with the highest valuation. Bikhchandani constructs the most efficient mechanism in
the set of ex-post implementable mechanisms that satisfy conditional efficiency.27 This
mechanism is typically inefficient since the seller must keep the item on a set of signals
of a positive measure and gains from trade are not realized.28 Our second result shows
that it is possible to implement a more efficient allocation in sequential environments
while maintaining conditional efficiency. That is, we show that there exists an ex-post
implementable, conditionally efficient sequential mechanism that is more efficient than
Bikhchandani’s mechanism.

3.1 Setup

Consider a seller of a single item facing a set I of n potential buyers, I = {1, ..., n}.
There are two periods, 1 and 2. Each buyer i ∈ I receives a private signal θ1

i ∈ [0, 1] in
period 1, and a private signal θ2

i ∈ [0, 1] in period 2. We let θi := (θ1
i , θ

2
i ) and denote

25See, Vickrey (1961), Clarke (1971), and Groves (1973).
26See, for example, Maskin (1992), Dasgupta and Maskin (2000), and Perry and Reny (2002).
27Jehiel et al. (2006) show that in environments of interdependent valuations and multidimensional

signals ex-post implementation of non-trivial deterministic decision rules is generically impossible.
Bikhchandani (2006) shows that in private good settings, ex-post implementation of non-trivial deter-
ministic decision rules is possible on a non-negligible set of valuations.

28Moreover, this mechanism need not be efficient under incentive compatibility constraints.
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by θ−i the signals of buyers other than i. The signal θ2
i is independent of θ1

i and θ−i

and is uniformly distributed, and this is common knowledge. Each buyer’s payoff is
minus his payment to the seller, plus, in case he gets the item, the value of the item.
Buyer i’s valuation of the item is a function of the agents’ signals, Vi : Θ → R+,
where Θ := [0, 1]2n. We assume that for every i ∈ I his valuation Vi is continuously
differentiable and strictly increasing in θ1

i and θ2
i for every θ−i. We denote by A the

set of feasible allocations A = {ai}i∈I ∪ {a0}, where ai is the allocation where agent i
receives the item, and a0 is the allocation where the seller keeps the object. A decision
rule is a function q : Θ → A. Given a decision rule q (θ) we define for every i ∈ I the
following function:

qi (θ) =

1 if q (θ) = ai

0 otherwise

A social choice function, s, assigns an allocation and payment scheme to every real-
ization of signals, i.e., s(θ) = (q (θ) , t1 (θ) , ..., tn (θ)), where q(θ) ∈ A and ti (θ) ∈ R
for every i ∈ I. We say that a social choice function (q (θ) , t1 (θ) , ..., tn (θ)) is ex-post
implementable in a sequential mechanism if for every i ∈ I and every θ−i we have

1.
Eθ2

i

[
Vi
(
θ1
i , θ

2
i , θ−i

)
· qi

(
θ1
i , θ

2
i , θ−i

)
− ti

(
θ1
i , θ

2
i , θ−i

)]
≥

Eθ2
i

[
Vi
(
θ1
i , θ

2
i , θ−i

)
· qi

(
θ̂1
i , θ̂

2
i

(
θ2
i

)
, θ−i

)
− ti

(
θ̂1
i , θ̂

2
i

(
θ2
i

)
, θ−i

)]
for every θ1

i ∈ [0, 1] and θ̂1
i ∈ [0, 1] and every θ̂2

i : [0, 1]→ [0, 1].

2.
Vi
(
θ1
i , θ

2
i , θ−i

)
· qi

(
θ1
i , θ

2
i , θ−i

)
− ti

(
θ1
i , θ

2
i , θ−i

)
≥

Vi
(
θ1
i , θ

2
i , θ−i

)
· qi

(
θ1
i , θ̂

2
i , θ−i

)
− ti

(
θ1
i , θ̂

2
i , θ−i

)
for every θ̂2

i ∈ [0, 1].

The above solution concept is robust in the sense that even if the buyer knows the
realization of the other buyers’ signals he will still choose to report truthfully given that
the other buyers report truthfully. In Section 2.3.1 we showed that, by an appropriate
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modification of the assumption on the buyer’s valuation function, our analysis can be
applied to any distribution of the buyer’s signals. The same argument is valid in the
case of multiple buyers when we consider the conditional distribution Fi (θ2

i |θ1
i , θ−i) for

each agent i. The notion of sequential ex-post implementation therefore requires that
the functions Vi (θ1

i , θ
2
i , θ−i) and the marginal probabilities Fi (θ2

i |θ1
i , θ−i) are commonly

known. Nonetheless, a buyer does not need to know the distribution of other buyers’
signals. In that sense sequential ex-post implementation is more robust than Bayesian
implementation, which requires that the latter requirement holds. However, it is less
robust than static ex-post implementation, which does not require any assumption on
knowledge of the properties of the joint distribution F (θ).

From the above definition we can deduce that the set of ex-post implementable
decision rules in the case of multiple buyers is characterized as the set of decision rules
for which the necessary and sufficient conditions for implementation in the single-buyer
case apply to every buyer for any realization of other buyers’ signals. In particular, we
can deduce the following corollaries:

Corollary 9. A decision rule q (θ) is ex-post implementable in a static mechanism if
and only if for every i ∈ I and every θ−i there exists a number Ci (θ−i) ∈ R such that

qi (θ) =


1 if Vi (θ1

i , θ
2
i , θ−i) > Ci (θ−i)

0 or 1 if Vi (θ1
i , θ

2
i , θ−i) = Ci (θ−i)

0 otherwise

Corollary 10. A decision rule q (θ) is ex-post implementable in a sequential mechanism
if and only if for every i ∈ I and every θ−i there exists a function Ci (·, θ−i) ∈ C such
that

qi (θ) =


1 if θ2

i > Ci (θ1
i , θ−i)

0 or 1 if θ2
i = Ci (θ1

i , θ−i)

0 otherwise

and in addition the function Vi (θ1
i , Ci (θ1

i , θ−i) , θ−i) is a decreasing function of θ1
i in the

segment
[
θ1,Ci
i (θ−i) , θ

1,Ci
i (θ−i)

]
for every θ−i.
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Corollary 11. Consider a decision rule of the following form: for every i ∈ I,

qi (θ) =


1 if Ui (θ1

i , θ
2
i , θ−i) > Ci (θ−i)

0 or 1 if Ui (θ1
i , θ

2
i , θ−i) = Ci (θ−i)

0 otherwise

where Ui (θ1
i , θ

2
i , θ−i) is continuously differentiable and strictly increasing in θ1

i and θ2
i .

The decision rule q (θ) is implementable by a sequential mechanism if and only if for
every i ∈ I and for every θ−i we have

∂Vi/∂θ1
i

∂Vi/∂θ2
i

(
θ1
i , θ

2
i , θ−i

)
≤

∂Ui/∂θ1
i

∂Ui/∂θ2
i

(
θ1
i , θ

2
i , θ−i

)

for every (θ1
i , θ

2
i ) ∈ Ūi (θ−i) := {(θ1

i , θ
2
i ) s.t. Ui (θ1

i , θ
2
i , θ−i) = Ci (θ−i)}

Note that in order for the decision rule q (θ) to be well defined it must be admissible;
that is, it should allocate the item to at most one buyer. This means that if qi (θ) = 1
then qj (θ) = 0 for every j ∈ I \ {i}. Therefore, q (θ) is implementable if and only if
it is admissible, and for every i the function qi (θ) satisfies the conditions of the above
corollaries.

3.2 Efficient Implementation in Sequential Environments

In this subsection we present the first result of the multiple-buyers model. We show
that when the buyers’ valuation functions are linear then the generic impossibility result
of Jehiel and Moldovanu (2001) regarding Bayesian efficient implementation in static
settings does not extend to sequential environments. To illustrate this observation
we consider a setup where there are two potential buyers, 1 and 2, and the buyers’
valuations are

V1 (θ) = α1
1 · θ1

1 + α2
1 · θ2

1 + β1
1 · θ1

2 + β2
1 · θ2

2

V2 (θ) = α1
2 · θ1

1 + α2
2 · θ2

1 + β1
2 · θ1

2 + β2
2 · θ2

2
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where
αk1 > αk2 > 0 and βk2 > βk1 > 0 for k ∈ {1, 2}

We define Ui (θ) := Vi (θ) − Vj (θ) for every i ∈ {1, 2}. The efficient decision rule is
admissible and it takes the following form:

qi (θ) =


1 if Ui (θ) > 0

0 or 1 if Ui (θ) = 0

0 otherwise

for every i ∈ {1, 2}. In static settings, Jehiel and Moldovanu (2001) show that if the buy-
ers’ signals are independent then the efficient decision rule is Bayesian implementable
only if

α1
1
α2

1
= α1

2
α2

2
and β1

2
β2

2
= β1

1
β2

1

These conditions are met on a set of measure zero in R8
+; that is, efficiency is generi-

cally impossible. However, Corollary 11 implies that in the sequential environment the
efficient decision rule is ex-post implementable by a sequential mechanism if

α1
1
α2

1
≥ α1

2
α2

2
and β1

2
β2

2
≥ β1

1
β2

1

These conditions are met on a set of positive measure in R8
+; that is, efficiency is

attained on a non-negligible set of valuations.

3.3 Conditional Efficiency in Sequential Environments

As mentioned earlier, Bikhchandani (2006) considers environments where buyers’ valu-
ations satisfy a single-crossing condition, i.e., where a buyer’s valuation is more respon-
sive to his signal than other buyers’ valuations. Bikhchandani proposes a mechanism
that satisfies conditional efficiency (henceforth CE) and is the most efficient mecha-
nism in the set of ex-post implementable CE static mechanisms. In this subsection
we show that in a sequential environment, for a general set of valuations, there ex-
ists an ex-post implementable sequential mechanism that is CE and is more efficient
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than Bikhchandani’s mechanism. The improvement upon Bikhchandani’s mechanism is
achieved through construction of a decision rule whose boundary differs from the bound-
ary of Bikhchandani’s decision rule in a way that provides a more efficient allocation
while maintaining sequential implementability.

Remark. In general environments of interdependent valuations and multidimensional
signals, Jehiel et al. (2006) show that for generic valuation functions the only deter-
ministic decision rules that are ex-post implementable are trivial. Their impossibility
result depends on the assumption that for any two alternatives there exist at least two
agents who are not indifferent between them. The possibility of implementing non-
trivial decision rules in private-goods settings arises since all the buyers except one are
indifferent between the alternative where this non-indifferent buyer wins the item and
the alternative where the seller keeps the item.

To illustrate our result we consider the following setup. There are two buyers I = {1, 2}
and each buyer i ∈ I receives a two-dimensional signal (θ1

i , θ
2
i ). Bikhchandani’s decision

rule takes the following form. For every i ∈ I,

qBi (θ) =


1 if Vi (θ1

i , θ
2
i , θj) > CB

i (θj)

0 or 1 if Vi (θ1
i , θ

2
i , θj) = CB

i (θj)

0 otherwise

Consider an arbitrary θj. We denote by V̄ B
i (θj) the boundary of the decision rule qBi (θ)

given θj, i.e.,
V̄i
B (θj) :=

{(
θ1
i , θ

2
i

)
s.t. Vi

(
θ1
i , θ

2
i , θj

)
= CB

i (θj)
}

Since Bikhchandani’s decision rule is CE the signals of the decision rule’s boundary
V̄ B
i (θj) lie above the signals of the boundary of the efficient decision rule Ūi (θj).

Bikhchandani’s decision rule also has the property that the sets V̄ B
i (θj) and Ūi (θj)

intersect. We denote by θ̇1
i (θj) the rightmost point where V̄ B

i (θj) and Ūi (θj) intersect,
i.e.,29

θ̇1
i (θj) := max

{
θ1
i s.t.

(
θ1
i , θ̃

2
i

(
θ1
i , θj

))
∈ V̄ B

i (θj) ∩ Ūi (θj)
}

29Where θ̃2
i

(
θ1

i , θj

)
:= θ2

i s.t.
(
θ1

i , θ
2
i

)
∈ Ūi (θj).
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We denote by [ui (θj) , ui (θj)] the segment of all θ1
i such that there exist θ2

i for which
(θ1
i , θ

2
i ) ∈ Ūi (θj). Now, assume that θ̇1

i (θj) < ui (θj); then for every point to the
right of θ̇1

i (θj) we have that boundary V̄ B
i (θj) lies above the boundary of the efficient

decision rule Ūi (θj). Therefore, we can apply a similar construction to the one that
appears in the proof of Theorem 8. That is, we can construct a function q̃i (θi, θj) that
satisfies the condition of Corollary 10. In addition, to the left of θ̇1 the boundary of
q̃i (θi, θj) coincides with the boundary of qBi (θi, θj) and to the right of θ̇1 the boundary
of q̃i (θi, θj) is below the boundary of qBi (θi, θj) and above the boundary of the efficient
decision rule. This means that q̃i (θi, θj) and qBi (θi, θj) coincide except in a set of signals
where q̃i (θi, θj) assigns the item to agent i while qBi (θi, θj) assigns the item to the seller,
who receives no utility from the item. Therefore, q̃i (θi, θj) provides a greater expected
social welfare than qBi (θi, θj).

Now, if we have that θ̇1
i (θj) < ui (θj) on a positive measure of Θj, we can construct

a decision rule by changing Bikhchandani’s decision rule from qBi (θi, θj) to q̃i (θi, θj) in
this subset of Θj. This new decision rule is CE (and hence admissible), is ex-post imple-
mentable in a sequential mechanism, and is strictly more efficient than Bikhchandani’s
decision rule.

3.4 Remark on Constrained Efficiency

We showed that in a subclass of mechanisms that satisfy conditional efficiency, it is
generally possible to achieve welfare improvement by using sequential mechanisms.
However, as Bikhchandani points out, in a static environment the most efficient condi-
tionally efficient mechanism need not be constrained efficient.30 A question that arises
is whether we can present a general characterization of settings in which a sequential
mechanism can provide a higher expected social welfare than a constrained efficient
static mechanism. In this subsection we explain the complexity of finding such a char-
acterization for general environments that do not make very particular assumptions on
the valuation functions.

Consider an agent i and a profile of signals of other agents θ−i. We say that a
30A mechanism is constrained efficient if it supplies the highest expected welfare out of the mecha-

nisms that are implementable.
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function q̃i (θi, θ−i) (strictly) dominates the function qi (θi, θ−i) if the set of signals of
agent i for which qi (θi, θ−i) = 1 is (strictly) contained within the set of signals where
q̃i (θi, θ−i) = 1, and if the set of signals where these sets do not coincide is contained
in the set of signals where it is efficient to allocate the item to agent i. A decision rule
q̃ strictly dominates the decision rule q if for every i ∈ I and every θ−i we have that
q̃i (θi, θ−i) dominates qi (θi, θ−i) and there is at least one agent k for which q̃k (θk, θ−k)
strictly dominates qk (θk, θ−k) on a set of positive measure of θ−k. For general envi-
ronments of valuation functions the way to show that a decision rule provides a higher
expected welfare than another decision rule is to show that the former strictly dominates
the latter. Theorem 8 and the result in Section 3.3 are both achieved by construction
of a sequentially implementable decision rule that strictly dominates the second-best
static decision rule. However, in general environments of multiple agents with interde-
pendent valuations and multidimensional signals it is not straightforward to construct
a sequentially implementable decision rule that strictly dominates the constrained effi-
cient decision rule. We illustrate this point below.

Consider the two-buyer setup of Section 3.3. We denote by qSB (θ) the constrained
efficient decision rule. Fix some θ̃j. Denote by V̄ SB

i

(
θ̃j
)
the boundary of qSBi

(
θi, θ̃j

)
,

and denote by θ̇1
i

(
θ̃j
)
the rightmost point where V̄ SB

i

(
θ̃j
)
and Ūi

(
θ̃j
)
intersect. Assume

that to the right of θ̇1
i

(
θ̃j
)
the boundary of the second-best decision rule V̄ SB

i

(
θ̃j
)

lies above the boundary of the efficient decision rule Ūi
(
θ̃j
)
. Now assume that we

apply a similar construction to the one we applied in the proof of Theorem 8. That
is, we construct a new decision rule q̃ (θ) in which to the left of θ̇1 the boundary
of q̃i

(
θi, θ̃j

)
coincides with the boundary of qSBi

(
θi, θ̃j

)
and to the right of θ̇1 the

boundary of q̃i
(
θi, θ̃j

)
is below the boundary of qSBi

(
θi, θ̃j

)
and above the boundary

of the efficient decision rule Ūi (θj). Unless we can preclude that in the set of signals
for which q̃i

(
θi, θ̃j

)
= 1 and qSBi

(
θi, θ̃j

)
= 0 there are no signals that allocate the

object to agent j under the decision rule qSB (θ), we run into the following problem.
Assume that such a signal exists and denote it by

(
θ̃i, θ̃j

)
. Under qSB (θ) we have that

qSBj
(
θ̃j, θ̃i

)
= 1. On the other hand, admissibility implies that under q̃ (θ) we have

that q̃j
(
θ̃j, θ̃i

)
= 0. Fix θ̃i. Since qSBj

(
θ̃j, θ̃i

)
= 1 and q̃j

(
θ̃j, θ̃i

)
= 0, we get that the

boundary of q̃j
(
θj, θ̃i

)
differs from the boundary of qSBj

(
θj, θ̃i

)
at one point. Moreover,
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the incentive constraints of buyer j imply further differences in these boundaries. That
is, we get that under the new decision rule q̃ (θ) we have that the boundary of q̃j

(
θj, θ̃i

)
differs from the boundary of qSBj

(
θj, θ̃i

)
. However, it is not clear that this change in

the boundaries satisfies that q̃j
(
θj, θ̃i

)
dominates qSBj

(
θj, θ̃i

)
. Hence it is not clear that

q̃ (θ) strictly dominates qSB (θ).
A way to construct a decision rule q̃ (θ) that dominates the constrained efficient

decision rule qSB (θ) is therefore to find an agent i where there is a positive measure
set Θ̃j ⊆ Θj such that for every θ̃j ∈ Θ̃j we have that q̃i

(
θi, θ̃j

)
strictly dominates the

function qSBi
(
θi, θ̃j

)
and for every signal θi for which q̃i

(
θi, θ̃j

)
= 1 and qSBi

(
θi, θ̃j

)
= 0

we have that qSBj
(
θi, θ̃j

)
= 0 (i.e., the seller keeps the object in this signal under

qSB (θ)). The characterization of the sets of valuations in which these properties hold
is left for future work.

4 Concluding Remarks

We have considered the problem of implementing an efficient sale in an environment
where buyers’ signals are multidimensional and there exist informational externalities.
In these environments efficiency is typically unattainable if signals arrive all at once.
We have shown that if signals arrive sequentially then it is possible to attain efficiency in
such environments. Moreover, even if sequential mechanisms do not attain full efficiency
they can still provide more efficient second-best solutions than static mechanisms. We
see a number of directions for future research, such as finding efficient sequential mech-
anisms that are detail-free, characterizing the conditions that enable full efficiency to be
achieved in environments where the dimension of the buyer’s signals is greater than two
and/or where seller has multiple objects and/or where there are allocative externalities.
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Appendix

A Generality of the Results

In the present paper we have restricted our attention to direct deterministic mecha-
nisms. In this appendix we analyze for which results of this paper this restriction is
without loss of generality. We consider two generalizations. The first is to the set
of indirect deterministic mechanisms. As Strausz (2003) points out, even if one re-
stricts attention to deterministic mechanisms, it is not clear that the restriction to
direct deterministic mechanisms is without loss of generality. This is because agents
may play mixed strategies in the indirect deterministic mechanism and therefore the
direct mechanism that mimic the equilibrium strategies of the indirect mechanism is
not deterministic. We find that all the results of the paper still hold even if we consider
indirect deterministic mechanisms. This outcome is based on the observation that for
every implementable indirect deterministic mechanism there exists an implementable
direct deterministic mechanism that yields equal or greater social welfare. The second
generalization is to stochastic mechanisms. Such a generalization is less crucial than
the first generalization because the restriction to deterministic mechanisms can be jus-
tified by practical considerations that derive from the commitment assumption. The
commitment assumption suggests that the outcomes of a mechanism can be executed
in an enforceable manner. Stochastic mechanisms are problematic in this respect since
they require that the seller hold a randomization device and that the results of this
device be verifiable. Laffont and Martimort (2002) note that

“Ensuring this verifiability is a more difficult problem than ensuring that
a deterministic mechanism is enforced, because any deviation away from a
given randomization can only be statistically detected once sufficiently many
realizations of the contracts have been observed. [...] The enforcement of
such stochastic mechanisms is thus particularly problematic.”

We find that all the results of the paper except maybe for Theorem 7 can be generalized
to environments with stochastic mechanisms.
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The results that appear in Section 3 have to do with existence of mechanisms. There-
fore, restriction to a subset of mechanisms does not undermine them. We proceed to
show that our results can be generalized to the set of indirect deterministic mechanisms.
We show that for every implementable indirect deterministic mechanism there exists
an implementable direct deterministic mechanism that yields equal or greater social
welfare. An implementable deterministic static mechanism yields two alternatives to
the buyer (buy the item or don’t buy the item) and assigns to each such alternative a
single price. Therefore, the only set of signals where the buyer can be indifferent be-
tween the two alternatives (and play mixed strategies) are on the isovalue curve where
the buyer’s valuation equals the difference in transfers. This set is of measure zero and
does not affect the expected social welfare. Hence, a direct mechanism that arbitrarily
assigns to the signals in this set a single alternative yields the same expected welfare.
An implementable sequential deterministic mechanism yields two alternatives in the
second period (buy the item or don’t buy the item) and assigns to each such alterna-
tive a single price. Therefore, there is a single signal in the second period where the
buyer can be indifferent between the two alternatives. Of course, allowing for mixed
strategies at this point would not change the expected social welfare. In the first period
of an implementable sequential deterministic mechanism every type of the buyer may
randomize between several options that this type is indifferent among. Each option is
composed of a single price in the second period and a payment today. Denote by I (θ1)
the support of options that type θ1 is mixing. Implementability implies that every
a ∈ I (θ1) is preferred by type θ1 to every b ∈ I

(
θ̃1
)
and every b ∈ I

(
θ̃1
)
is preferred

by type θ̃1 to every a ∈ I (θ1). Therefore, every mechanism that offers some arbitrary a
in I (θ1) to type θ1 is implementable by a direct mechanism. Now, each second-period
price sets an expected social welfare given θ1. Consider the option a∗ (θ1) ∈ I (θ1) that
sets the second-period price that maximizes this expected social welfare given θ1 out of
all the options in31 I (θ1). The deterministic mechanism for which a∗ (θ1) = I (θ1) yields

31Such an option exists because the support of the second-period prices in I
(
θ1) is a closed set.

Denote by Ih

(
θ1) the set of options in I (θ1) that set a price that is greater than or equal to the price

that is set by the efficient decision rule. Denote by Il

(
θ1) the set of options in I

(
θ1) that set a price

that is less than or equal to the price that is set by the efficient decision rule. We have that a∗
(
θ1) is

either the option that sets the minimum price in Ih

(
θ1) or the option that sets the maximal price in

Il

(
θ1).
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equal or greater expected welfare than the original mechanism and is implementable by
a direct mechanism.

We now consider the generalization of our results to stochastic mechanism. Since
we assume that the buyer’s utility is linear in transfer we can assume without loss
of generality that the transfers are deterministic. Therefore, a deterministic decision
rule is implementable by a stochastic mechanism if and only if it is implementable
by a deterministic mechanism. Since efficient decision rules are (almost everywhere)
deterministic, all the result about the possibility of implementing full efficiency are
without loss of generality. We now show that the second-best decision rule in a static
environment is also deterministic. This implies that Theorem 8 is also without loss
of generality. Denote the valuation of the seller if she keeps the item by Vs and the
valuation of the buyer if he gets the item by Vb. We assume that the following condition
holds: Vb (θ′)− Vb (θ) > Vs (θ′)− Vs (θ) for every θ′ > θ where32 θ′, θ ∈ [0, 1]2 .Consider
the buyer’s isovalue curves in [0, 1]2 and let

VI (V ) =
{
θ ∈ [0, 1]2 s.t Vb (θ) = V

}
We define the following function:

W (V ) := E θ ∈ VI (V ) [Vb (θ)− Vs (θ)]

This function is strictly increasing in V. Now consider an equilibrium that is regular,
i.e., where every θ and θ̃ that are on the same isovalue curve of the buyer map the same
(possibly stochastic) outcome.33 We denote by V ∗ the value for which34 W (V ∗) = 0.
In that case we get that the second-best decision rule out of the set of all stochastic

32Let x′ > x denote that x′ is at least as large as x in every coordinate and x′ 6= x.
33The term “regular equilibrium” is due to Dasgupta and Maskin (2000).
34If no such value exists then the efficient decision rule is trivial and implementable.
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decision rules is

q (θ) =


1 if θ ∈ VI (V ) s.t. V > V ∗

r ∈ [0, 1] if θ ∈ VI (V ∗)

0 if θ ∈ VI (V ) s.t. V < V ∗

where r is the probability that the item is assigned to the buyer. That is, the second
best decision rule is also (almost everywhere) deterministic.

B Proofs

Proof of Claim 1

In the main text we showed that there can be at most one isovalue curve for which two
signals that lie on this isovalue curve are assigned different alternatives. This means that
the decision rule maps according to values of V . Assume that there exists a valuation
V (θ) such that q (θ) = 1 and a valuation V (θ′) such that q (θ′) = 0 and V (θ′) > V (θ).
Implementability implies that

V (θ)− t (1) ≥ −t (0)

and
V (θ′)− t (1) ≤ −t (0)

and so we get V (θ) ≥ V (θ′), a contradiction. This proves necessity. We now prove
sufficiency. We set t (0) = 0 and t (1) = C; then we get that for every θ such that
V (θ) < C we have V (θ) − t (1) < 0 and for every θ such that V (θ) ≥ C we have
V (θ)− t (1) ≥ 0. Thus, the decision rule is implementable by a static mechanism �
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Proof of Theorem 2

Lemma A: Condition 2 in the definition of implementation in a sequential mechanism
is satisfied iff for every θ1 there exists C (θ1) such that

q (θ) =


1 if θ2 > C (θ1)

0 or 1 if θ2 = C (θ1)

0 otherwise

and the transfers t (q (θ) , θ1) +p (θ1) are set as follows: t (1, θ1) = V (θ1, C (θ1)) +p (θ1)
and t (0, θ1) = p (θ1)
Proof : Assume that the mechanism is of the above shape; then if it is the case that
either C (θ1) = 1 and q (θ1, 1) = 0 or C (θ1) = 0 and q (θ1, 0) = 1, then the mechanism in
the second period is trivial and hence incentive compatible. Assume that the decision
rule is not trivial. Consider some C (θ1) ∈ [0, 1] then if θ2 > C (θ1) and the buyer
reports truthfully then the buyer gets the item and pays t (1, θ1) and receives a utility
of V (θ1, θ2) − V (θ1, C (θ1)) − p (θ1) and if the buyer deviates he receives either the
same utility or −p (θ1). By the monotonicity of V we have that if θ2 > C (θ1) then
V (θ1, θ2)− V (θ1, C (θ1))− p (θ1) > −p (θ1); that is, there is no profitable deviation. If
θ2 < C (θ1) and the buyer reports truthfully then he does not get the item and pays
t (0, θ1) and receives a utility of −p (θ1) and if the buyer deviates he receives either the
same utility or V (θ1, θ2) − V (θ1, C (θ1)) − p (θ1). By the monotonicity of V we have
that if θ2 < C (θ1) then V (θ1, θ2) − V (θ1, C (θ1)) − p (θ1) ≤ −p (θ1); that is, there is
no profitable deviation. If θ2 = C (θ1) then in either case the buyer receives a utility of
−p (θ1) and so there is no profitable deviation.
Assume that the mechanism is incentive compatible in the second period. Assume
that the mechanism is not trivial. Then for every θ2 such that q (θ1, θ2) = 1 we
have V (θ1, θ2) ≥ t (1, θ1) − t (0, θ1), and for every θ2 such that q (θ1, θ2) = 0 we have
V (θ1, θ2) ≤ t (1, θ1) − t (0, θ1). Since V is continuous and monotonic there exists a
single number C (θ1) that satisfies V (θ1, C (θ1)) = t (1, θ1) − t (0, θ1). Therefore, if
θ2 = C (θ1) then q (θ1, θ2) can receive either 1 or 0. By the monotonicity of V we have
that V (θ1, θ2) > t (1, θ1)− t (0, θ1) if and only if θ2 > C (θ1). Therefore, if θ2 > C (θ1)
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then q (θ1, θ2) = 1. By the monotonicity of V we have that V (θ1, θ2) < t (1, θ1)−t (0, θ1)
if and only if θ2 < C (θ1). Therefore, if θ2 < C (θ1) then q (θ1, θ2) = 0. �

We now proceed to prove that given that the condition in Lemma A is satisfied, it is
necessary and sufficient for implementation that V (θ1, C (θ1)) := τ (θ1) is a decreasing
function of θ1 in the segment

[
θ1,C , θ

1,C].
Lemma B: Assume that q (θ) is implementable by a sequential mechanism then for
every θ1, θ̃1 ∈

[
θ1,C , θ

1,C] such that θ1 < θ̃1 we have that τ
(
θ̃1
)
≤ τ (θ1)

Proof: The decision rule q (θ) is implementable and therefore the condition in Lemma
A is satisfied. This means that the report of θ1 ∈

[
θ1,C , θ

1,C] simply sets p (θ1) and
C (θ1), which in turn set the difference t (1, θ1)− t (0, θ1) = V (θ1, C (θ1)).
Consider a pair of signals θ1, θ̃1 ∈

[
θ1,C , θ

1,C] such that θ1 < θ̃1. Assume that τ (θ1) <
τ
(
θ̃1
)
. We consider the following cases:

Case 1: τ (θ1) ≤ V
(
θ̃1, 0

)
. In this case, assuming the same participation fee for both

signals, if θ̃1 deviates to θ1 then he gains

V −1(θ̃1,τ(θ̃1))∫
0

V
(
θ̃1, s

)
− τ

(
θ1
)
ds +

1∫
V −1(θ̃1,τ(θ̃1))

τ
(
θ̃1
)
− τ

(
θ1
)
ds := B1

therefore it must be that the difference in the participation fees is larger than this gain,
i.e., p (θ1)− p

(
θ̃1
)
≥ B1.

τ
(
θ1
)

τ
(
θ̃1
)

0 1

V
(
θ̃1, ·

)

B1

Case 2: V
(
θ̃1, 0

)
< τ (θ1). In this case, assuming the same participation fee for both
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signals, if θ̃1 deviates to θ1 then he gains

V −1(θ̃1,τ(θ̃1))∫
V −1(θ̃1,τ(θ1))

V
(
θ̃1, s

)
− τ

(
θ1
)
ds +

1∫
V −1(θ̃1,τ(θ̃1))

τ
(
θ̃1
)
− τ

(
θ1
)
ds := B2

therefore it must be that the difference in the participation fees is larger than this gain,
i.e., p (θ1)− p

(
θ̃1
)
≥ B2.

τ
(
θ1
)

τ
(
θ̃1
)

0 1

V
(
θ̃1, ·

)

B2

Now for type θ1 we consider the following possible cases:
Case 1: V (θ1, 1) ≤ τ

(
θ̃1
)
. In this case if θ1 deviates to θ̃1 then he loses

1∫
V −1(θ1,τ(θ1))

V
(
θ1, s

)
− τ

(
θ1
)
ds < B1, B2

and therefore there exists a profitable deviation from truthtelling.
Case 2: τ

(
θ̃1
)
< V (θ1, 1) . In this case if θ1case if θ1 deviates to θ̃1 then he loses

V −1(θ1,τ(θ̃1))∫
V −1(θ1,τ(θ1))

V
(
θ1, s

)
− τ

(
θ1
)
ds +

1∫
V −1(θ1,τ(θ̃1))

τ
(
θ̃1
)
− τ

(
θ1
)
ds < B1, B2

and therefore there exists a profitable deviation from truthtelling.
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τ
(
θ1
)

τ
(
θ̃1
)

0 1

V
(
θ1, ·

)

B2

The loss from deviation is the area marked by the solid lines while the gain from the deviation is the area marked by

the black dots

We now prove sufficiency.
Lemma C: Assume that the condition in Lemma A is satisfied and assume that τ (θ1)
is decreasing in the segment

[
θ1,C , θ

1,C]; then q (θ) is implementable by a sequential
mechanism.
Proof: We define A to be the set of all θ2 ∈ [0, 1] that are pivotal with respect to some
θ1 ∈

[
θ1,C , θ

1,C], i.e.,
A :=

{
All the θ2 ∈ [0, 1] s.t. there exists a θ1 ∈

[
θ1,C , θ

1,C] s.t. C (θ1
)

= θ2
}

Now since τ (θ1) := V (θ1, C (θ1)) is decreasing we have that C (θ1) is strictly decreasing
and therefore the function C−1 : A→ [0, 1] is defined and decreasing.
We define a function g : [0, 1] \ A → A that maps every θ2 that is not pivotal to the
following pivotal element,

g
(
θ2
)

:=

sup
{
θ̃2 s.t. θ̃2<θ2 and θ̃2 ∈ A

}
if sup

{
θ̃2 s.t. θ̃2<θ2 and θ̃2 ∈ A

}
∈ A

inf
{
θ̃2 s.t. θ̃2>θ2 and θ̃2 ∈ A

}
if inf

{
θ̃2 s.t. θ̃2>θ2 and θ̃2 ∈ A

}
∈ A

We define another function θ̊1 : [0, 1]→ [0, 1] as follows:

θ̊1
(
θ2
)

:=

C
−1 (θ2) if θ2 ∈ A

C−1 (g (θ2)) if θ2 /∈ A
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We define another function m : [0, 1]→ R as follows:

m
(
θ2
)

:= V
(
θ̊1
(
θ2
)
, θ2
)

The function m attaches to every pivotal type θ2 ∈ A the second-period price that is
received by every agent who reported type C−1 (θ2) in the first period. Since C−1 is
decreasing and since lower prices are assigned to higher types of the first period, we
get that m is an increasing function. Moreover, note that for every θ̃1 ∈

[
θ1,C , θ

1,C] we
have

m
(
θ2
)

= V
(
θ̃1, θ2

)
at C

(
θ̃1
)

= θ2

m
(
θ2
)
≤ V

(
θ̃1, θ2

)
for every C

(
θ̃1
)
≤ θ2

m
(
θ2
)
≥ V

(
θ̃1, θ2

)
for every C

(
θ̃1
)
≥ θ2

We define for every y ∈ Image τ :

Θ1 (y) =
{
θ1 such that τ

(
θ1
)

= y
}

That is, Θ1 (y) is the set of signals of the first period that map the price y. For every
y ∈ Image τ we set35 θ1 (y) := min Θ1 (y) and C (y) := C

(
θ1 (y)

)
. That is, C (y)

assigns to every price y the pivotal second-period type of the lowest first-period type
that receives the price y. Let y′ < y; we get that for every θ1 ∈ Θ1 (y) we have
C (y′) < C (θ1) ≤ C (y).
We define the payment for the option of buying the product in the next period at price
y as follows:

p(y) =
∫ 1

C(y)
(m (s)− y) ds

We show that under this payment scheme for every y ∈ Image τ , every type θ1 ∈ Θ1 (y)
will choose to report truthfully and buy the option of price y for a payment of p (y).
Let y ∈ Image τ and θ1 ∈ Θ1 (y) assume that this type reports θ̂1 ∈ Θ1 (y′) for y < y′;

35We assume w.l.o.g. that if Θ1 (y) is an interval then it is a half closed interval that has a minimum
element.
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then he loses
∫ V −1(θ1,y′)
C(θ1)

(V (θ1, s)− y) ds+
∫ 1

V −1(θ1,y′)
(y′ − y) ds ≡ L

and he gains ∫ 1

C(y)
(m (s)− y) ds−

∫ 1

C(y′)
(m (s)− y′) ds =

∫ C(y′)

C(y)
(m (s)− y) ds+

∫ 1

C(y′)
(y′ − y) ds ≡ G

Now m (C (y′)) = y′, and since m is increasing we get that m(s) ≤ y′ for every s <
C (y′); in particular, for every s ∈ [V −1 (θ1, y′) , C (y′)] and therefore

∫ C(y′)

V −1(θ1,y′)
(m (s)− y) ds+

∫ 1

C(y′)
(y′ − y) ds ≤

∫ 1

V −1(θ1,y′)
(y′ − y) ds

In addition, we have that C (θ1) ≤ C (y). We also have that m (s) ≤ V (θ1, s) for every
C (θ1) ≤ s and therefore

∫ V −1(θ1,y′)
C(y)

(m (s)− y) ds ≤
∫ V −1(θ1,y′)
C(θ1)

(
V
(
θ1, s

)
− y

)
ds

and we conclude that G ≤ L. Therefore such a deviation is not profitable.

Let y ∈ Image τ and θ1 ∈ Θ1 (y) and assume that this type reports θ̂1 ∈ Θ1 (y′) for
y′ < y; then he gains

∫ C(θ1)
V −1(θ1,y′)

(
V
(
θ1, s

)
− y′

)
ds+

∫ 1

C(θ1)
(y − y′) ds ≡ G

and he loses ∫ 1

C(y′)
(m (s)− y′) ds−

∫ 1

C(y)
(m (s)− y) ds =

∫ C(y)

C(y′)
(m (s)− y′) ds+

∫ 1

C(y)
(y − y′) ds ≡ L

Nowm (C (θ1)) = y and since m is increasing we get thatm(s) ≥ y for every s > C (θ1);
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in particular for every s ∈ [C (θ1) , C (y)] and therefore

∫ C(y)

C(θ1)
(m (s)− y′) ds+

∫ 1

C(y)
(y − y′) ds ≥

∫ 1

C(θ1)
(y − y′) ds

In addition we have that C (y′) ≤ V −1 (θ1, y′). We also have that m (s) ≥ V (θ1, s) for
every C (θ1) ≥ s and therefore

∫ C(θ1)
C(y′)

(m (s)− y′) ds ≥
∫ C(θ1)
V −1(θ1,y′)

(
V
(
θ1, s

)
− y′

)
ds

and we conclude that L ≥ G. Therefore such a deviation is not profitable.

Now, consider the case where 0 < θ1,C for every θ1 ≤ θ1,C we set p (θ1) = 0. Since
θ1,C does not want to deviate to buy an option with a lower price than so does every
θ1 < θ1,C . Consider θ1,C

< θ1 we set τ (θ1) = V
(
θ

1,C
, 0
)
and p(θ1) = p

(
θ

1,C). Since
θ

1,C does not want to deviate to buy an option with a higher price than so does every
θ

1,C
< θ1. �

Proof of Theorem 7

We show that there exists a sequential second-best mechanism in which there exists
θ̃1 ∈ [u, u] for which τ

(
θ̃1
)

= V
(
θ̃1, θ̃2

(
θ̃1
))

. That is, the boundary of the second-best
decision rule intersects with the boundary of the efficient decision rule. Consider an
arbitrary mechanism.

Assume that in this mechanism there is no θ1 such that τ (θ1) = V
(
θ1, θ̃2 (θ1)

)
and

divide it into the four following cases:
(a) τ (θ1) > V

(
θ1, θ̃2 (θ1)

)
for every θ1 ∈ [u, u]. In this case we have that τ (u) >

V
(
u, θ̃2 (u)

)
. Consider a different mechanism that is characterized by the following

second-period prices.

τ ′ (θ1) :=

τ (θ1) if θ1 < u

V
(
u, θ̃2 (u)

)
if θ1 ≥ u

Now τ ′ (θ1) is a pricing function that satisfies the conditions of Theorem 2: whether
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u < 1 and θ̃2 (u) = 0 or u = 1 and θ̃2 (u) ≥ 0, the function τ ′ (θ1) is a decreasing function
in the areas where the threshold type in the new mechanism, C ′ (θ1), is between 0 and
1. Therefore this mechanism is sequentially implementable and, in addition, it yields
an expected social welfare that is at least as high as the expected social welfare in the
original mechanism.

(b) τ (θ1) > V
(
θ1, θ̃2 (θ1)

)
for every θ1 ∈ [u, u]. In this case we have that τ (u) >

V
(
u, θ̃2 (u)

)
. Consider a different mechanism that is characterized by the following

second-period prices:

τ ′ (θ1) :=

V
(
u, θ̃2 (u)

)
if θ1 ≤ u

τ (θ1) if θ1 > u

Now τ ′ (θ1) is a pricing function that satisfies the conditions of Theorem 2: whether
u > 0 and θ̃2 (u) = 1 or u = 0 and θ̃2 (u) ≤ 1, the function τ ′ (θ1) is a decreasing function
in the areas where the threshold type in the new mechanism, C ′ (θ1), is between 0 and
1. Therefore this mechanism is sequentially implementable and, in addition, it yields
an expected social welfare that is at least as high as the expected social welfare in the
original mechanism.

(c) There exists θ̂1 ∈ (u, u) such that τ
(
θ̂1
)
> V

(
θ̂1, θ̃2

(
θ̂1
))

and for every θ̂1 <

θ1 we have that τ (θ1) < V
(
θ1, θ̃2 (θ1)

)
< V

(
θ̂1, θ̃2

(
θ̂1
))

. Lets look at a different
mechanism that is characterized by the following second period prices

τ ′ (θ1) :=

V
(
θ̂1, θ̃2

(
θ̂1
))

if θ1 = θ̂1

τ (θ1) otherwise

Now τ ′ (θ1) is a pricing function that satisfies the conditions of Theorem 2. Therefore
this mechanism is sequentially implementable and, in addition, it yields an expected
social welfare that is at least as high as the expected social welfare in the original
mechanism.

(d) There exists θ̂1 ∈ (u, u) such that τ
(
θ̂1
)
< V

(
θ̂1, θ̃2

(
θ̂1
))

and for every θ1 < θ̂1

we have that V
(
θ̂1, θ̃2

(
θ̂1
))

< V
(
θ1, θ̃2 (θ1)

)
< τ (θ1). Lets look at a mechanism that
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is characterized by the following second period prices

τ ′ (θ1) :=

V
(
θ̂1, θ̃2

(
θ̂1
))

if θ1 = θ̂1

τ (θ1) otherwise

Now τ ′ (θ1) is a pricing function that satisfies the conditions of Theorem 2. Therefore
this mechanism is sequentially implementable and, in addition, it yields an expected
social welfare that is at least as high as the expected social welfare in the original
mechanism.

This means that for any mechanism for which there is no θ1 such that τ (θ1) =
V
(
θ1, θ̃2 (θ1)

)
there exists another mechanism in which there is a θ1 such that τ (θ1) =

V
(
θ1, θ̃2 (θ1)

)
that yields at least the same expected social welfare. This means that

there exists a second best mechanism with the property that there is θ1 such that
τ (θ1) = V

(
θ1, θ̃2 (θ1)

)
. The rest of the proof appears in the body of the text.

Proof of Theorem 8

We now show the formal proof for the case where (1) holds; the case where (2) holds
is proven by a similar argument. First, we denote by [v, v] the segment of all θ1 such
that there exists θ2 where (θ1, θ2) ∈ V̄ SB. We define θ̊2 (θ1) to be the function that
assigns to any θ1 ∈ [v, v] the threshold type he inflicts with respect to θ2, i.e., θ̊2 (θ1) :=
θ2 s.t. (θ1, θ2) ∈ V̄ SB. Assume that (1) holds and consider some ε such that θ̇1 +ε < ū.
Let

V ′ := max
θ1∈[θ̇1+ε,ū]

V
(
θ1, θ̃2

(
θ1
))

and we have that V ′ < V
(
θ̇1, θ̃2

(
θ̇1
))

. We define θ̂2 (θ1) as follows:

θ̂2
(
θ1
)

=

θ
2 s.t. Vi (θ1, θ2) = V ′ if such θ2 exists

0 otherwise
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Define the function C̃ (θ1) as follows:

C̃
(
θ1
)

=



1 if 0 ≤ θ1 < v

θ̊2 (θ1) if v ≤ θ1 ≤ θ̇1 + ε

θ̂2 (θ1) if θ̇1 + ε < θ1 ≤ u

0 if u < θ1 ≤ 1

Consider a decision rule q̃ (θ) that takes the following form:

q̃ (θ) =

1 if θ2 ≥ C̃ (θ1)

0 otherwise

The function V
(
θ1, C̃ (θ1)

)
is decreasing in the segment

[
θ1,C̃ , θ

1,C̃
]
and therefore q̃ (θ)

is implementable by a sequential mechanism. To see that the social welfare under q̃ (θ)
is greater than under qSB (θ), note that qSB (θ) and q̃ (θ) coincide except for a set of
positive measure that lies above the boundary of the efficient decision rule in which
q̃ (θ) allocates the item to the buyer and qSB (θ) allocates the item to the seller.
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